[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 14, Issue 1 (3-2025) ::
MEO 2025, 14(1): 103-130 Back to browse issues page
Application of artificial intelligence in higher education based on learning rate and adoption of artificial intelligence: the mediating role of attitude and behavioral intentions
Farideh Nasiri , Sakineh Jafari *
Semnan University
Abstract:   (1841 Views)

The purpose of the current research was the application of artificial intelligence in higher education based on the level of learning and acceptance of artificial intelligence and digital leadership with the mediation of the attitude and behavioral intentions of artificial intelligence. According to the purpose, the research was applied and according to the method of data collection, it was a correlational descriptive research. In this regard, the statistical population of the research included all the professors of Semnan University (academic year 1402-1403) who entered the research using the stratified sampling method of 200 people and the questionnaires of learning and acceptance of artificial intelligence, digital leadership, intelligence attitude, Complemented the behavioral objectives of AI and the application of AI. The validity of the questionnaires using Cronbach's alpha respectively (0.81); (0.91); (0.89); (0.73); (0.83) and (0.86). Statistical methods of correlation coefficient and path analysis were used to analyze the data. There is a significant and positive relationship between the amount of learning and acceptance of artificial intelligence, digital leadership, attitude and behavioral intentions with the use of artificial intelligence. Learning artificial intelligence directly and also through the mediation of attitude and behavioral intentions has a significant effect on the use of artificial intelligence by professors. Acceptance of artificial intelligence through the mediation of attitude and behavioral intentions has an indirect and significant effect on the use of artificial intelligence by professors. Digital leadership directly has a significant effect on the use of artificial intelligence by professors. The results of this research indicate the importance of the attitude of artificial intelligence in increasing the behavioral intentions of artificial intelligence and consequently increasing the use of artificial intelligence in higher education.
 

Article number: 4
Keywords: artificial intelligence, Learning, adoption, digital leadership, attitude, behavioral intentions, application
Full-Text [PDF 696 kb]   (175 Downloads)    
Type of Study: Research | Subject: managing education in higher education
Received: 2024/09/10 | Accepted: 2025/02/19
References
1. Abdekhoda, M., & Dehnad, A. (2024). Adopting artificial intelligence driven technology in medical education. Interactive Technology and Smart Education, 21(4), 535-545. [DOI:10.1108/ITSE-12-2023-0240]
2. Abdolahi shahvali, E., Arizavi, Z., Hematipour, A., & Jahangirimehr, A. (2024). Investigating the Level of Knowledge, Attitude and Performance Students Regarding the Applications of Artificial Intelligence in Nursing. Jundishapur Scientific Medical Journal, 23(2), 134-142. [in Persian] [DOI:10.32592/JSMJ.23.2.134]
3. Agostinelli, F., Doepke, M., Sorrenti, G., & Zilibotti, F. (2020). It takes a village: The economics of parenting with neighborhood and peer effects (No. w27050). National Bureau of Economic Research. [DOI:10.3386/w27050]
4. Al Ajmi M. K. (2022). The impact of digital leadership on teachers' technology integration during the COVID-19 pandemic in Kuwait. International journal of educational research, 112, 101928. [DOI:10.1016/j.ijer.2022.101928]
5. Al Darayseh, A. (2023). Acceptance of artificial intelligence in teaching science: Science teachers' perspective. Computers and Education: Artificial Intelligence. 4, 100132. [DOI:10.1016/j.caeai.2023.100132]
6. Al Ka'bi, A. (2023). Proposed artificial intelligence algorithm and deep learning techniques for development of higher education. International Journal of Intelligent Networks, 4, 68-73. [DOI:10.1016/j.ijin.2023.03.002]
7. Albayati, H. (2024). Investigating undergraduate students' perceptions and awareness of using ChatGPT as a regular assistance tool: A user acceptance perspective study. Computers and Education: Artificial Intelligence, 100203. [DOI:10.1016/j.caeai.2024.100203]
8. Alfalah, A. A. (2023). Factors influencing students' adoption and use of mobile learning management systems (m-LMSs): A quantitative study of Saudi Arabia. International Journal of Information Management Data Insights, 3(1), 100143. [DOI:10.1016/j.jjimei.2022.100143]
9. Ali Ghorbani, M., Zolfaghari Zaferani, R., & Imani, M. N. (2023). Designing a Conceptual Model of Innovative Educational Methods in Higher Education (Case Study of Islamic Azad University of Tehran Province). Islamic lifestyle with a focus on health, 7(2), 218-226. [in Persian] .
10. AlKanaan, H. (2022). Awareness regarding the implication of artificial intelligence in science education among pre-service science teachers. International Journal of Instruction, 15(3), Article 895912. [DOI:10.29333/iji.2022.15348a]
11. Alqahtani, T., Badreldin, H. A., Alrashed, M., Alshaya, A. I., Alghamdi, S. S., Bin Saleh, K., Alowais, S. A., Alshaya, O. A., Rahman, I., Al Yami, M. S., & Albekairy, A. M. (2023). The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research. Research in social & administrative pharmacy : RSAP, 19(8), 1236-1242. [DOI:10.1016/j.sapharm.2023.05.016]
12. Araujo, T., Helberger, N., Kruikemeier, S., & De Vreese, C. H. (2020). In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI & society, 35(3), 611-623. [DOI:10.1007/s00146-019-00931-w]
13. Avidov-Ungar, O., Shamir-Inbal, T., & Blau, I. (2022). Typology of digital leadership roles tasked with integrating new technologies into teaching: Insights from metaphor analysis. Journal of Research on Technology in Education, 54(1), 92-107. [DOI:10.1080/15391523.2020.1809035]
14. Awosola, I. (2022). What Effect Does Technology Have on a Responsive Leadership Style?. In Exploring Ethical Problems in Today's Technological World, 23-44. IGI Global. [DOI:10.4018/978-1-6684-5892-1.ch002]
15. Bahmanabadi, A. (2023). Artificial intelligence and its applications and effects in research activities. Journal of Agricultural Information sciences and Technology , 6(2), 33-43. [in Persian].
16. Bisen, I. E., Arslan, E. A., Yildirim, K., & Yildirim, Y. (2021). Artificial intelligence and machine learning in higher education. In machine learning approaches for improvising modern learning systems, 1-17. IGI Global. [DOI:10.4018/978-1-7998-5009-0.ch001]
17. Boubker, O. (2024). From chatting to self-educating: Can AI tools boost student learning outcomes?. Expert Systems with Applications, 238, 121820. [DOI:10.1016/j.eswa.2023.121820]
18. Brachten, F., Kissmer, T., & Stieglitz, S. (2021). The acceptance of chatbots in an enterprise context-A survey study. International Journal of Information Management, 60, Article 102375. [DOI:10.1016/j.ijinfomgt.2021.102375]
19. Braganza, A., Chen, W., Canhoto, A., & Sap, S. (2021). Productive employment and decent work: The impact of AI adoption on psychological contracts, job engagement and employee trust. Journal of Business Research, 131, 485-494. [DOI:10.1016/j.jbusres.2020.08.018]
20. Chatterjee, S., & Bhattacharjee, K. K. (2020). Adoption of artificial intelligence in higher education: A quantitative analysis using structural equation modelling. Education and Information Technologies, 25, 3443-3463.‏ [DOI:10.1007/s10639-020-10159-7]
21. Chatterjee, S., Rana, N. P., Khorana, S., Mikalef, P., & Sharma, A. (2021). Assessing organizational users' intentions and behavior to AI integrated CRM systems: A meta-UTAUT approach. Information Systems Frontiers, 25(4), 1299-1313. [DOI:10.1007/s10796-021-10181-1]
22. Chen. L., Chen. P., & Lin. Z. (2020(. Artificial Intelligence in Education: A Review, IEEE Access, 8, 75264-75278. [DOI:10.1109/ACCESS.2020.2988510]
23. Chiu, T. K., Meng, H., Chai, C. S., King, I., Wong, S., & Yam, Y. (2021). Creation and evaluation of a pretertiary artificial intelligence (AI) curriculum. IEEE Transactions on Education, 65(1), 30-39. [DOI:10.1109/TE.2021.3085878]
24. Choi, S. (2020). Opportunities for higher education of artificial intelligence in Korea. International Journal of Engineering Research and Technology, 13(11), 3428-3430 [DOI:10.37624/IJERT/13.11.2020.3428-3430]
25. Davis, F. D., Granić, A., & Marangunić, N. (2023). The technology acceptance model 30 years of TAM. Technology, 1(1), 1-150 [DOI:10.1007/978-3-030-45274-2_1]
26. Dortaj, F., Rajabiyan Dehzireh, M., & Allahkarami, A. (2022). The Role of Media Literacy in Predicting Attitudes toward E-learning of Students and Professors in the Corona. Journal of Research in Educational Systems, 15(55), 85-97. [in Persian].
27. Emon, M. M. H., & Hassan, F., Nahid, M., & Rattanawiboonsom, V. (2023). Predicting Adoption Intention of Artificial Intelligence A Study on ChatGPT. AIUB Journal of Science and Engineering (AJSE). 22. 189-196. [DOI:10.53799/ajse.v22i2.797]
28. Essien, A., Chukwukelu, G., & Essien, V. (2020). Opportunities and challenges of adopting artificial intelligence for learning and teaching in higher education. In Fostering communication and learning with underutilized technologies in higher education, 67-78. IGI Global. [DOI:10.4018/978-1-7998-4846-2.ch005]
29. Fareen, J. A. M. (2022). Digital Learning in Higher Education: A Road to Transformation and Reform. European Journal of Interactive Multimedia and Education, 3(1), 02206. [DOI:10.30935/ejimed/11493]
30. Ferede, B., Elen, J., Van Petegem, W., Hunde, A. B., & Goeman, K. (2022). A structural equation model for determinants of instructors' educational ICT use in higher education in developing countries: Evidence from Ethiopia. Computers & Education, 188, 104566. [DOI:10.1016/j.compedu.2022.104566]
31. Fishman, J., Lushin, V., & Mandell, D. S. (2020). Predicting implementation: comparing validated measures of intention and assessing the role of motivation when designing behavioral interventions. Implementation science communications, 1, 1-10. [DOI:10.1186/s43058-020-00050-4]
32. Fu, S., Gu, H., & Yang, B. (2020). The affordances of AI‐enabled automatic scoring applications on learners' continuous learning intention: An empirical study in China. British Journal of Educational Technology, 51(5), 1674-1692. [DOI:10.1111/bjet.12995]
33. Gade, K., Geyik, S. C., Kenthapadi, K., Mithal, V., & Taly, A. (2019). Explainable AI in industry. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 3203-3204). [DOI:10.1145/3292500.3332281]
34. Geddam, S. M., Nethravathi, N., & Hussian, A. A. (2024). Understanding AI Adoption: The Mediating Role of Attitude in User Acceptance. Journal of Informatics Education and Research, 4(2). [DOI:10.52783/jier.v4i2.975]
35. Ghamrawi, N., & M. Tamim, R. (2023). A typology for digital leadership in higher education: the case of a large-scale mobile technology initiative (using tablets). Education and Information Technologies, 28(6), 7089-7110. [DOI:10.1007/s10639-022-11483-w]
36. Ghamrawi, N., Shal, T., & Ghamrawi, N. A. (2023). Exploring the impact of AI on teacher leadership: regressing or expanding?. Education and Information Technologies, 1-19. [DOI:10.1080/13603124.2023.2248060]
37. Ghorbanian, M., Ghahramani, M., & Abolghasemi, M. (2021). Identifying the Components of Good Governance in Iranian Higher Education System. The Journal of New Thoughts on Education, 17(1), 53-82. [in Persian].
38. Hakim, B. (2020). Technology integrated online classrooms and the challenges faced by the EFL teachers in Saudi Arabia during. [DOI:10.7575/aiac.ijalel.v.9n.5p.33]
39. Hamzah, N. H., Nasir, M. K. M., & Wahab, J. A. (2021). The Effects of Principals' Digital Leadership on Teachers' Digital Teaching during the COVID-19 Pandemic in Malaysia. Journal of Education and E-Learning Research, 8(2), 216-221. [DOI:10.20448/journal.509.2021.82.216.221]
40. Hanaysha, J. R., Shriedeh, F. B., & In'airat, M. (2023). Impact of classroom environment, teacher competency, information and communication technology resources, and university facilities on student engagement and academic performance. International Journal of Information Management Data Insights, 3(2), 100188. [DOI:10.1016/j.jjimei.2023.100188]
41. Hirankerd, K., & Kittisunthonphisarn, N. (2020). E-learning management system based on reality technology with AI. International Journal of Information and Education Technology, 10(4), 259-264. [DOI:10.18178/ijiet.2020.10.4.1373]
42. Holstein, K., McLaren, B. M., & Aleven, V. (2019). Co-designing a real-time classroom orchestration tool to support teacher-AI complementarity. Grantee Submission, 6(2), 27-52. [DOI:10.18608/jla.2019.62.3]
43. Hoseini Moghadam, M. (2023). Artificial Intelligence and the Future of University Education in Iran. Quarterly Journal of Research and Planning in Higher Education, 29(1), 1-25. [in Persian]. [DOI:10.61838/irphe.29.1.1]
44. Kaplan-Rakowski, R., Grotewold, K., Hartwick, P. & Papin, K., (2023). Generative AI and Teachers' Perspectives on Its Implementation in Education. Journal of Interactive Learning Research, 34(2), 313-338. [DOI:10.70725/815246mfssgp]
45. Kelly, S., Kaye, S. A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925. [DOI:10.1016/j.tele.2022.101925]
46. Lambert, S. I., Madi, M., Sopka, S., Lenes, A., Stange, H., Buszello, C. P., & Stephan, A. (2023). An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. NPJ digital medicine, 6(1), 111. [DOI:10.1038/s41746-023-00852-5]
47. Marikyan, D., Papagiannidis, S., & Stewart, G. (2023). Technology acceptance research: Meta-analysis. Journal of Information Science, 01655515231191177 [DOI:10.1177/01655515231191177]
48. Melo, E., Silva, I., Costa, D. G., Viegas, C. M., & Barros, T. M. (2022). On the use of explainable artificial intelligence to evaluate school dropout. Education Sciences, 12(12), 845. [DOI:10.3390/educsci12120845]
49. Milton, J., & Al-Busaidi, A. (2023). New Role of Leadership in AI Era: Educational Sector. SHS Web of Conferences. 156, 1-4. [DOI:10.1051/shsconf/202315609005]
50. Minkevics, V., & Kampars, J. (2021). Artificial intelligence and big data driven is security management solution with applications in higher education organizations. In P. Chemouil. (Ed.) 17th International Conference on Network and Service Management, CNSM 2021. Institute of Electrical and Electronics Engineers Inc. 340-344. [DOI:10.23919/CNSM52442.2021.9615575]
51. Mohammadi Pakravan, P., & Azarshahi, S. (2024). Prioritizing the Drivers of Using Artificial Intelligence in Education Using the MAIRKA Method (Case Study: Hamadan Province). New Explorations in Strategic Business Intelligence, 1(1), 105-121. [in Persian].
52. Mokhtari, S. A. M., & Rezvani, R. (2023). Application of artificial intelligence in history education. Research in History Education, 3(4), 53-65. [in Persian].
53. Motallebinejad, A., Fazeli, F., & Navaii, E. (2023). A systematic review of the promises and challenges of artificial intelligence for teachers. Technology and Scholarship in Education, 3(1), 23-44. [in Persian]
54. Moullin, J. C., Ehrhart, M. G., & Aarons, G. A. (2018). Development and testing of the Measure of Innovation-Specific Implementation Intentions (MISII) using Rasch measurement theory. Implementation Science, 13, 1-10. [DOI:10.1186/s13012-018-0782-1]
55. Muler, R. O. (1996). Fundamentals of Structural Equation Modeling: Introduction to LISREL and EQS Software. Translated by Siavash Talepasand, Semnan: Semnan University.
56. Naccache, H., Altae, M., & Al-Own, F. A. (2023). The Effect of the Software Test Survey for Students in Developing the Arabic Language Skills of Third-Grade Students in Qatar. Journal of Educational Technology Systems, 52(1), 117-140. [DOI:10.1177/00472395231180551]
57. Ranbhise, N., Rathod, S. R., & Talsandekar, A. (2023). A correlational study on knowledge and attitude regarding artificial intelligence in health care among nursing students of DY Patil College of Nursing, Kolhapur, Maharashtra. Int J Multidiscip Res, 5(4), 1-8. [DOI:10.36948/ijfmr.2023.v05i04.5637]
58. Northouse, P. G. (2021). Leadership: theory and practice. Sage publications.
59. O'Shaughnessy, M. R., Schiff, D. S., Varshney, L. R., Rozell, C. J., & Davenport, M. A. (2023). What governs attitudes toward artificial intelligence adoption and governance?. Science and Public Policy, 50(2), 161-176. [DOI:10.1093/scipol/scac056]
60. Patma, T. S., Wardana, L. W., Wibowo, A., Narmaditya, B. S., & Akbarina, F. (2021). The impact of social media marketing for Indonesian SMEs sustainability: Lesson from Covid-19 pandemic. Cogent Business & Management, 8(1), 1953679. [DOI:10.1080/23311975.2021.1953679]
61. Petry, T. (2018). Digital leadership. In Knowledge Management in Digital Change. Springer, Cham. 209-218. [DOI:10.1007/978-3-319-73546-7_12]
62. Rahiman, H. U., & Kodikal, R. (2024). Revolutionizing education: Artificial intelligence empowered learning in higher education. Cogent Education, 11(1), 2293431. [DOI:10.1080/2331186X.2023.2293431]
63. Rahmati Kohroodi, S., Shams Moorkani, G. R., Shami Zanjani, M., & Abolghasemi, M. (2021). Presenting a Framework for Explaining the Competencies of Digital Leaders through Meta-Synthesis Method. Journal of Research in Human Resources Management, 13(1), 9-42. [in Persian].
64. Rios-Campos, C., Zambrano, E. O. G., Cantos, M. F. M., Anchundia-Gómez, O., León, M. E. C., Moya, G. E. M., García, E. A. M., Batalla, E. A. P., Oliva, N. A. R. de la, & Zelada, O. S. (2024). Universities and Artificial Intelligence. South Florida Journal of Development, 5(6), 4016. [DOI:10.46932/sfjdv5n6-010]
65. Safari, E., & Ansari, A. A. (2022). Identifying and Ranking the Factors Affecting the Acceptance of Artificial Intelligence in the Public and Private Sectors. Business Intelligence Management Studies, 11(41), 221-254. [in Persian]
66. Salas-Pilco, S. Z. & Yang, Y. (2022). Artificial intelligence applications in Latin American higher education: a systematic review. Int J Educ Technol High Educ, 19, 21. [DOI:10.1186/s41239-022-00326-w]
67. Schepman, A., & Rodway, P. (2023). The General Attitudes towards Artificial Intelligence Scale (GAAIS): Confirmatory validation and associations with personality, corporate distrust, and general trust. International Journal of Human-Computer Interaction, 39(13), 2724-2741. [DOI:10.1080/10447318.2022.2085400]
68. Schiavo, G., Businaro, S., & Zancanaro, M. (2024). Comprehension, apprehension, and acceptance: Understanding the influence of literacy and anxiety on acceptance of artificial Intelligence. Technology in Society, 77, 102537. [DOI:10.1016/j.techsoc.2024.102537]
69. Seyedamini B. (2023).The Effect of Education on the Level of Knowledge and Attitude of Nursing Students in the Management of Children's Pain. Research in Medical Education, 12 (2), 25-35. [in Persian]
70. Shahmohammadi, A., Azizi, N., & Bahmani, M. (2023). Development of a Model to Improve the Teaching Quality of Faculty Members of the Distance Education System (Case Study Payam Noor University). Research in Teaching, 11(1), 116-138. [in Persian]
71. Shal, T., Ghamrawi, N., & Ghamrawi, N. A. (2024). Webinars for teacher professional development: perceptions of members of a virtual professional community of practice. Open Learning: The Journal of Open, Distance and e-Learning, 1-17. [DOI:10.1080/02680513.2023.2296645]
72. Sharma, R. K., & Sharma, K. K. (2022). The Role of Leadership Style towards Digital Transformation of Educational Institutes in Era of Industrial Revolution 4.0. Indian Economy, 57.
73. Shin, W. S., & Shin, D. H. (2020). A study on the application of artificial intelligence in elementary science education. Journal of Korean elementary science education, 39(1), 117-132.
74. Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors influencing artificial intelligence-based intelligent products. Telematics and Informatics, 47, 101324. [DOI:10.1016/j.tele.2019.101324]
75. Sreenivasa Chakravarthi, D., Prasad Vemuri, V., Jafersadhiq, A., & Yogeshkumar Jethabhai, P. (2023). The overall attitude of senior management and behavioral intention towards implementing artificial intelligence in enhancing organizational decision-making. A Journal for New Zealand Herpetology BioGecko, 12.
76. Su, J., Ng, D. T. K., & Chu, S. K. W. (2023). Artificial intelligence (AI) literacy in early childhood education: The challenges and opportunities. Computers and Education: Artificial Intelligence, 4, 100124. [DOI:10.1016/j.caeai.2023.100124]
77. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478. [DOI:10.2307/30036540]
78. Wang, T., Lund, B. D., Marengo, A., Pagano, A., Mannuru, N. R., Teel, Z. A., & Pange, J. (2023). Exploring the potential impact of artificial intelligence (AI) on international students in higher education: Generative AI, chatbots, analytics, and international student success. Applied Sciences, 13(11), 6716. [DOI:10.3390/app13116716]
79. Wang, Y. (2023). Artificial Intelligence technologies in college English translation teaching. Journal of psycholinguistic research, 52(5), 1525-1544. [DOI:10.1007/s10936-023-09960-5]
80. Wang, Y., Liu, C., & Tu, Y. F. (2021). Factors affecting the adoption of AI-based applications in higher education. Educational Technology & Society, 24(3), 116-129.
81. Westera, W., Prada, R., Mascarenhas, S., Santos, P. A., Dias, J., Guimarães, M.,... & Ruseti, S. (2020). Artificial intelligence moving serious gaming: Presenting reusable game AI components. Education and Information Technologies, 25, 351-380. [DOI:10.1007/s10639-019-09968-2]
82. Xia, Q., Chiu, T. K., Lee, M., Sanusi, I. T., Dai, Y., & Chai, C. S. (2022). A self-determination theory (SDT) design approach for inclusive and diverse artificial intelligence (AI) education. Computers & Education, 189, 104582. [DOI:10.1016/j.compedu.2022.104582]
83. Zhang, M., Shu, L., Luo, X., Yuan, M., & Zheng, X. (2022). Virtual reality technology in construction safety training: Extended technology acceptance model. Automation in Construction, 1 [DOI:10.1016/j.autcon.2021.104113]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

nasiri F, jafari S. Application of artificial intelligence in higher education based on learning rate and adoption of artificial intelligence: the mediating role of attitude and behavioral intentions. MEO 2025; 14 (1) : 4
URL: http://journalieaa.ir/article-1-756-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 14, Issue 1 (3-2025) Back to browse issues page
نشریه مدیریت بر آموزش سازمان ها Journal of Managing Education in Organizations

 
 
Persian site map - English site map - Created in 0.12 seconds with 37 queries by YEKTAWEB 4725